20 research outputs found

    Power Quality Improvement of a Microgrid with a Demand-Side-Based Energy Management System

    Get PDF
    This chapter addresses the power quality of grid-connected microgrids in steady state. Three different power quality issues are evaluated: the voltage drop, the harmonic distortion, and the phase unbalance. A formulation for an energy management algorithm for microgrids is proposed under the form of a mixed-integer linear optimization including harmonic load flows. It handles both the optimization of the scheduling of all the generation, storage, and load assets, and the resolution of power quality issues at the tertiary level of control by adjusting the levels of certain types of loads within the system. This algorithm is simulated for different scenarios on a conceptual test-case microgrid with residential, industrial, and commercial loads. The results show that the demand-side management mechanism inside the algorithm can adapt efficiently the consumption behavior of certain loads, so that the voltage drop, the voltage total harmonic distortion, and the voltage unbalance factor meet the required standards at every node of the microgrid during the day. It is also highlighted that the microgrid can gradually reduce the purchase of power from the utility grid to which it is connected if the electricity price on the spot market increases

    Operation of Photovoltaic Panels in Stand-alone Applications

    Get PDF
    In this chapter, we propose the analysis of the maximum power point (MPP) of photovoltaic panels (PV) in a renewable energy application. From the current–voltage characteristics, we deduced the MPP of a PV panel and specified the use of a power block (DC/DC converter) controlled by an MPPT control. In the case of an MPPT control of type perturb and observe, we realized the photovoltaic system that heats a photovoltaic solar cooker, taking into account this MPPT command. The experimentation of this application, during a sunny day, shows that the MPPT control carries out its role correctly, such as optimal operation of the PV panels and heating of the cooker by the maximum power supplied by the PV panels. The analysis of all the results shows an excellent agreement between the experiment and the simulation of the operation of the photovoltaic system which made it possible to operate the photovoltaic panels around their MPP, over the course of the sun. Under these conditions, the efficiency of the proposed DC/DC converter, with a power of 500 Wp, is of the order of 97%

    Influence of material uncertainties on the RLC parameters of wound inductors modeled using the finite element method

    No full text
    In this work, we highlight the influence of the material uncertainties (magnetic permeability, electric conductivity of a Mn-Zn ferrite core, and electric permittivity of wire insulation) on the RLC parameters of a wound inductor extracted from the finite element method. To that end, the finite element method is embedded in a Monte Carlo simulation. We show that considering mentioned different material properties as real random variables, leads to significant variations in the distributions of the RLC parameters

    Surface impedance boundary condition with circuit coupling for the 3D finite element modeling of wireless power transfer

    Full text link
    A light 3D finite element magnetodynamic a-v model of resonant wireless power transfer coils using 3D surface impedance boundary condition strongly coupled with an external circuit is proposed, reflecting the importance of external circuit elements (notably capacitances) in the resonance phenomena. Preliminary results outline the accuracy of the model. © 2016 IEEE
    corecore